3.21.52 \(\int \frac {(a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}}{(d+e x)^{9/2}} \, dx\) [2052]

Optimal. Leaf size=233 \[ \frac {5 c d \left (a-\frac {c d^2}{e^2}\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{e \sqrt {d+e x}}+\frac {5 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 e^2 (d+e x)^{3/2}}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{e (d+e x)^{7/2}}+\frac {5 c d \left (c d^2-a e^2\right )^{3/2} \tan ^{-1}\left (\frac {\sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d^2-a e^2} \sqrt {d+e x}}\right )}{e^{7/2}} \]

[Out]

5/3*c*d*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/e^2/(e*x+d)^(3/2)-(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/e/(e
*x+d)^(7/2)+5*c*d*(-a*e^2+c*d^2)^(3/2)*arctan(e^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/(-a*e^2+c*d^2)^(
1/2)/(e*x+d)^(1/2))/e^(7/2)+5*c*d*(a-c*d^2/e^2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/e/(e*x+d)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.12, antiderivative size = 233, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {676, 678, 674, 211} \begin {gather*} \frac {5 c d \left (c d^2-a e^2\right )^{3/2} \text {ArcTan}\left (\frac {\sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {d+e x} \sqrt {c d^2-a e^2}}\right )}{e^{7/2}}-\frac {\left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{e (d+e x)^{7/2}}+\frac {5 c d \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 e^2 (d+e x)^{3/2}}+\frac {5 c d \left (a-\frac {c d^2}{e^2}\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{e \sqrt {d+e x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/(d + e*x)^(9/2),x]

[Out]

(5*c*d*(a - (c*d^2)/e^2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(e*Sqrt[d + e*x]) + (5*c*d*(a*d*e + (c*d
^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(3*e^2*(d + e*x)^(3/2)) - (a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/(e*(
d + e*x)^(7/2)) + (5*c*d*(c*d^2 - a*e^2)^(3/2)*ArcTan[(Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(S
qrt[c*d^2 - a*e^2]*Sqrt[d + e*x])])/e^(7/2)

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 674

Int[1/(Sqrt[(d_.) + (e_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[2*e, Subst[Int[1/(
2*c*d - b*e + e^2*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^
2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0]

Rule 676

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((
a + b*x + c*x^2)^p/(e*(m + p + 1))), x] - Dist[c*(p/(e^2*(m + p + 1))), Int[(d + e*x)^(m + 2)*(a + b*x + c*x^2
)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && GtQ[
p, 0] && (LtQ[m, -2] || EqQ[m + 2*p + 1, 0]) && NeQ[m + p + 1, 0] && IntegerQ[2*p]

Rule 678

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((
a + b*x + c*x^2)^p/(e*(m + 2*p + 1))), x] - Dist[p*((2*c*d - b*e)/(e^2*(m + 2*p + 1))), Int[(d + e*x)^(m + 1)*
(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a
*e^2, 0] && GtQ[p, 0] && (LeQ[-2, m, 0] || EqQ[m + p + 1, 0]) && NeQ[m + 2*p + 1, 0] && IntegerQ[2*p]

Rubi steps

\begin {align*} \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{9/2}} \, dx &=-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{e (d+e x)^{7/2}}+\frac {(5 c d) \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{5/2}} \, dx}{2 e}\\ &=\frac {5 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 e^2 (d+e x)^{3/2}}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{e (d+e x)^{7/2}}-\frac {\left (5 c d \left (c d^2-a e^2\right )\right ) \int \frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{(d+e x)^{3/2}} \, dx}{2 e^2}\\ &=-\frac {5 c d \left (c d^2-a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{e^3 \sqrt {d+e x}}+\frac {5 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 e^2 (d+e x)^{3/2}}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{e (d+e x)^{7/2}}+\frac {\left (5 c d \left (c d^2-a e^2\right )^2\right ) \int \frac {1}{\sqrt {d+e x} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{2 e^3}\\ &=-\frac {5 c d \left (c d^2-a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{e^3 \sqrt {d+e x}}+\frac {5 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 e^2 (d+e x)^{3/2}}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{e (d+e x)^{7/2}}+\frac {\left (5 c d \left (c d^2-a e^2\right )^2\right ) \text {Subst}\left (\int \frac {1}{2 c d^2 e-e \left (c d^2+a e^2\right )+e^2 x^2} \, dx,x,\frac {\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {d+e x}}\right )}{e^2}\\ &=-\frac {5 c d \left (c d^2-a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{e^3 \sqrt {d+e x}}+\frac {5 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 e^2 (d+e x)^{3/2}}-\frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{e (d+e x)^{7/2}}+\frac {5 c d \left (c d^2-a e^2\right )^{3/2} \tan ^{-1}\left (\frac {\sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt {c d^2-a e^2} \sqrt {d+e x}}\right )}{e^{7/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.35, size = 178, normalized size = 0.76 \begin {gather*} \frac {\sqrt {(a e+c d x) (d+e x)} \left (\sqrt {e} \sqrt {a e+c d x} \left (-3 a^2 e^4+2 a c d e^2 (10 d+7 e x)+c^2 d^2 \left (-15 d^2-10 d e x+2 e^2 x^2\right )\right )+15 c d \left (c d^2-a e^2\right )^{3/2} (d+e x) \tan ^{-1}\left (\frac {\sqrt {e} \sqrt {a e+c d x}}{\sqrt {c d^2-a e^2}}\right )\right )}{3 e^{7/2} \sqrt {a e+c d x} (d+e x)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/(d + e*x)^(9/2),x]

[Out]

(Sqrt[(a*e + c*d*x)*(d + e*x)]*(Sqrt[e]*Sqrt[a*e + c*d*x]*(-3*a^2*e^4 + 2*a*c*d*e^2*(10*d + 7*e*x) + c^2*d^2*(
-15*d^2 - 10*d*e*x + 2*e^2*x^2)) + 15*c*d*(c*d^2 - a*e^2)^(3/2)*(d + e*x)*ArcTan[(Sqrt[e]*Sqrt[a*e + c*d*x])/S
qrt[c*d^2 - a*e^2]]))/(3*e^(7/2)*Sqrt[a*e + c*d*x]*(d + e*x)^(3/2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(510\) vs. \(2(207)=414\).
time = 0.73, size = 511, normalized size = 2.19

method result size
default \(-\frac {\sqrt {\left (c d x +a e \right ) \left (e x +d \right )}\, \left (15 \arctanh \left (\frac {e \sqrt {c d x +a e}}{\sqrt {\left (e^{2} a -c \,d^{2}\right ) e}}\right ) a^{2} c d \,e^{5} x -30 \arctanh \left (\frac {e \sqrt {c d x +a e}}{\sqrt {\left (e^{2} a -c \,d^{2}\right ) e}}\right ) a \,c^{2} d^{3} e^{3} x +15 \arctanh \left (\frac {e \sqrt {c d x +a e}}{\sqrt {\left (e^{2} a -c \,d^{2}\right ) e}}\right ) c^{3} d^{5} e x +15 \arctanh \left (\frac {e \sqrt {c d x +a e}}{\sqrt {\left (e^{2} a -c \,d^{2}\right ) e}}\right ) a^{2} c \,d^{2} e^{4}-30 \arctanh \left (\frac {e \sqrt {c d x +a e}}{\sqrt {\left (e^{2} a -c \,d^{2}\right ) e}}\right ) a \,c^{2} d^{4} e^{2}+15 \arctanh \left (\frac {e \sqrt {c d x +a e}}{\sqrt {\left (e^{2} a -c \,d^{2}\right ) e}}\right ) c^{3} d^{6}-2 c^{2} d^{2} e^{2} x^{2} \sqrt {c d x +a e}\, \sqrt {\left (e^{2} a -c \,d^{2}\right ) e}-14 a c d \,e^{3} x \sqrt {c d x +a e}\, \sqrt {\left (e^{2} a -c \,d^{2}\right ) e}+10 c^{2} d^{3} e x \sqrt {c d x +a e}\, \sqrt {\left (e^{2} a -c \,d^{2}\right ) e}+3 \sqrt {\left (e^{2} a -c \,d^{2}\right ) e}\, \sqrt {c d x +a e}\, a^{2} e^{4}-20 \sqrt {\left (e^{2} a -c \,d^{2}\right ) e}\, \sqrt {c d x +a e}\, a c \,d^{2} e^{2}+15 \sqrt {\left (e^{2} a -c \,d^{2}\right ) e}\, \sqrt {c d x +a e}\, c^{2} d^{4}\right )}{3 \left (e x +d \right )^{\frac {3}{2}} \sqrt {c d x +a e}\, e^{3} \sqrt {\left (e^{2} a -c \,d^{2}\right ) e}}\) \(511\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(9/2),x,method=_RETURNVERBOSE)

[Out]

-1/3*((c*d*x+a*e)*(e*x+d))^(1/2)*(15*arctanh(e*(c*d*x+a*e)^(1/2)/((a*e^2-c*d^2)*e)^(1/2))*a^2*c*d*e^5*x-30*arc
tanh(e*(c*d*x+a*e)^(1/2)/((a*e^2-c*d^2)*e)^(1/2))*a*c^2*d^3*e^3*x+15*arctanh(e*(c*d*x+a*e)^(1/2)/((a*e^2-c*d^2
)*e)^(1/2))*c^3*d^5*e*x+15*arctanh(e*(c*d*x+a*e)^(1/2)/((a*e^2-c*d^2)*e)^(1/2))*a^2*c*d^2*e^4-30*arctanh(e*(c*
d*x+a*e)^(1/2)/((a*e^2-c*d^2)*e)^(1/2))*a*c^2*d^4*e^2+15*arctanh(e*(c*d*x+a*e)^(1/2)/((a*e^2-c*d^2)*e)^(1/2))*
c^3*d^6-2*c^2*d^2*e^2*x^2*(c*d*x+a*e)^(1/2)*((a*e^2-c*d^2)*e)^(1/2)-14*a*c*d*e^3*x*(c*d*x+a*e)^(1/2)*((a*e^2-c
*d^2)*e)^(1/2)+10*c^2*d^3*e*x*(c*d*x+a*e)^(1/2)*((a*e^2-c*d^2)*e)^(1/2)+3*((a*e^2-c*d^2)*e)^(1/2)*(c*d*x+a*e)^
(1/2)*a^2*e^4-20*((a*e^2-c*d^2)*e)^(1/2)*(c*d*x+a*e)^(1/2)*a*c*d^2*e^2+15*((a*e^2-c*d^2)*e)^(1/2)*(c*d*x+a*e)^
(1/2)*c^2*d^4)/(e*x+d)^(3/2)/(c*d*x+a*e)^(1/2)/e^3/((a*e^2-c*d^2)*e)^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(9/2),x, algorithm="maxima")

[Out]

integrate((c*d*x^2*e + a*d*e + (c*d^2 + a*e^2)*x)^(5/2)/(x*e + d)^(9/2), x)

________________________________________________________________________________________

Fricas [A]
time = 3.62, size = 547, normalized size = 2.35 \begin {gather*} \left [\frac {15 \, {\left (2 \, c^{2} d^{4} x e + c^{2} d^{5} - a c d x^{2} e^{4} - 2 \, a c d^{2} x e^{3} + {\left (c^{2} d^{3} x^{2} - a c d^{3}\right )} e^{2}\right )} \sqrt {-{\left (c d^{2} - a e^{2}\right )} e^{\left (-1\right )}} \log \left (\frac {c d^{3} - 2 \, a x e^{3} - 2 \, \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} \sqrt {x e + d} \sqrt {-{\left (c d^{2} - a e^{2}\right )} e^{\left (-1\right )}} e - {\left (c d x^{2} + 2 \, a d\right )} e^{2}}{x^{2} e^{2} + 2 \, d x e + d^{2}}\right ) - 2 \, {\left (10 \, c^{2} d^{3} x e + 15 \, c^{2} d^{4} - 14 \, a c d x e^{3} + 3 \, a^{2} e^{4} - 2 \, {\left (c^{2} d^{2} x^{2} + 10 \, a c d^{2}\right )} e^{2}\right )} \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} \sqrt {x e + d}}{6 \, {\left (x^{2} e^{5} + 2 \, d x e^{4} + d^{2} e^{3}\right )}}, -\frac {15 \, {\left (2 \, c^{2} d^{4} x e + c^{2} d^{5} - a c d x^{2} e^{4} - 2 \, a c d^{2} x e^{3} + {\left (c^{2} d^{3} x^{2} - a c d^{3}\right )} e^{2}\right )} \sqrt {c d^{2} - a e^{2}} \arctan \left (\frac {\sqrt {c d^{2} - a e^{2}} \sqrt {x e + d} e^{\left (-\frac {1}{2}\right )}}{\sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e}}\right ) e^{\left (-\frac {1}{2}\right )} + {\left (10 \, c^{2} d^{3} x e + 15 \, c^{2} d^{4} - 14 \, a c d x e^{3} + 3 \, a^{2} e^{4} - 2 \, {\left (c^{2} d^{2} x^{2} + 10 \, a c d^{2}\right )} e^{2}\right )} \sqrt {c d^{2} x + a x e^{2} + {\left (c d x^{2} + a d\right )} e} \sqrt {x e + d}}{3 \, {\left (x^{2} e^{5} + 2 \, d x e^{4} + d^{2} e^{3}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(9/2),x, algorithm="fricas")

[Out]

[1/6*(15*(2*c^2*d^4*x*e + c^2*d^5 - a*c*d*x^2*e^4 - 2*a*c*d^2*x*e^3 + (c^2*d^3*x^2 - a*c*d^3)*e^2)*sqrt(-(c*d^
2 - a*e^2)*e^(-1))*log((c*d^3 - 2*a*x*e^3 - 2*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*sqrt(x*e + d)*sqrt(-
(c*d^2 - a*e^2)*e^(-1))*e - (c*d*x^2 + 2*a*d)*e^2)/(x^2*e^2 + 2*d*x*e + d^2)) - 2*(10*c^2*d^3*x*e + 15*c^2*d^4
 - 14*a*c*d*x*e^3 + 3*a^2*e^4 - 2*(c^2*d^2*x^2 + 10*a*c*d^2)*e^2)*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*
sqrt(x*e + d))/(x^2*e^5 + 2*d*x*e^4 + d^2*e^3), -1/3*(15*(2*c^2*d^4*x*e + c^2*d^5 - a*c*d*x^2*e^4 - 2*a*c*d^2*
x*e^3 + (c^2*d^3*x^2 - a*c*d^3)*e^2)*sqrt(c*d^2 - a*e^2)*arctan(sqrt(c*d^2 - a*e^2)*sqrt(x*e + d)*e^(-1/2)/sqr
t(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e))*e^(-1/2) + (10*c^2*d^3*x*e + 15*c^2*d^4 - 14*a*c*d*x*e^3 + 3*a^2*e^4
 - 2*(c^2*d^2*x^2 + 10*a*c*d^2)*e^2)*sqrt(c*d^2*x + a*x*e^2 + (c*d*x^2 + a*d)*e)*sqrt(x*e + d))/(x^2*e^5 + 2*d
*x*e^4 + d^2*e^3)]

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2)/(e*x+d)**(9/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 3877 deep

________________________________________________________________________________________

Giac [A]
time = 0.96, size = 347, normalized size = 1.49 \begin {gather*} -\frac {{\left (2 \, {\left (6 \, \sqrt {{\left (x e + d\right )} c d e - c d^{2} e + a e^{3}} c^{3} d^{4} e^{3} - 6 \, \sqrt {{\left (x e + d\right )} c d e - c d^{2} e + a e^{3}} a c^{2} d^{2} e^{5} - {\left ({\left (x e + d\right )} c d e - c d^{2} e + a e^{3}\right )}^{\frac {3}{2}} c^{2} d^{2} e^{2}\right )} e^{\left (-3\right )} - \frac {15 \, {\left (c^{4} d^{6} e - 2 \, a c^{3} d^{4} e^{3} + a^{2} c^{2} d^{2} e^{5}\right )} \arctan \left (\frac {\sqrt {{\left (x e + d\right )} c d e - c d^{2} e + a e^{3}}}{\sqrt {c d^{2} e - a e^{3}}}\right )}{\sqrt {c d^{2} e - a e^{3}}} + \frac {3 \, {\left (\sqrt {{\left (x e + d\right )} c d e - c d^{2} e + a e^{3}} c^{4} d^{6} e - 2 \, \sqrt {{\left (x e + d\right )} c d e - c d^{2} e + a e^{3}} a c^{3} d^{4} e^{3} + \sqrt {{\left (x e + d\right )} c d e - c d^{2} e + a e^{3}} a^{2} c^{2} d^{2} e^{5}\right )} e^{\left (-1\right )}}{{\left (x e + d\right )} c d}\right )} e^{\left (-4\right )}}{3 \, c d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(9/2),x, algorithm="giac")

[Out]

-1/3*(2*(6*sqrt((x*e + d)*c*d*e - c*d^2*e + a*e^3)*c^3*d^4*e^3 - 6*sqrt((x*e + d)*c*d*e - c*d^2*e + a*e^3)*a*c
^2*d^2*e^5 - ((x*e + d)*c*d*e - c*d^2*e + a*e^3)^(3/2)*c^2*d^2*e^2)*e^(-3) - 15*(c^4*d^6*e - 2*a*c^3*d^4*e^3 +
 a^2*c^2*d^2*e^5)*arctan(sqrt((x*e + d)*c*d*e - c*d^2*e + a*e^3)/sqrt(c*d^2*e - a*e^3))/sqrt(c*d^2*e - a*e^3)
+ 3*(sqrt((x*e + d)*c*d*e - c*d^2*e + a*e^3)*c^4*d^6*e - 2*sqrt((x*e + d)*c*d*e - c*d^2*e + a*e^3)*a*c^3*d^4*e
^3 + sqrt((x*e + d)*c*d*e - c*d^2*e + a*e^3)*a^2*c^2*d^2*e^5)*e^(-1)/((x*e + d)*c*d))*e^(-4)/(c*d)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e\right )}^{5/2}}{{\left (d+e\,x\right )}^{9/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2)/(d + e*x)^(9/2),x)

[Out]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2)/(d + e*x)^(9/2), x)

________________________________________________________________________________________